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Key concepts

Bayesian inference in finite, parametric models
* we contrast maximum likelihood with Bayesian inference
e when both prior and likelihood are Gaussian, all calculations are tractable

e the posterior on the parameters is Gaussian
e the predictive distribution is Gaussian
o the marginal likelihood is tractable

¢ we observe the contrast

¢ in maximum likelihood the data fit gets better with larger models
(overfitting)

¢ the marginal likelihood prefers an intermediate model size (Occam’s
Razor)
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Maximum likelihood, parametric model

Supervised parametric learning:
* data: x,y
* model M: y = fy(x) + ¢
Gaussian likelihood:

N
p(y|X, w, J\/{) X H CXP(—%(yn - fw(xn))z/o—ﬁoise)'

n=1
Maximize the likelihood:

wmr = argmax p(ylx, w, M).
w

Make predictions, by plugging in the ML estimate:

P(y*|X*, WML, M)
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Bayesian inference, parametric model

Posterior parameter distribution by Bayes rule (p(a/b) = p(a)p(bla)/ ):

p(wix,y, M) = POFMUPGYIX, W, M)

Making predictions (marginalizing out the parameters):
P(Y«lx, x,y, M) = J'P(y*,wlx,y,x*,M)dW
= Jp(y*\w,x*,M)p(wlx,y,M)dw.
Marginal likelihood:

= JP(W|X, M)p(ylx, w, M)dw
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Posterior and predictive distribution in detail

For a linear-in-the-parameters model with Gaussian priors and Gaussian noise:

e Gaussian prior on the weights: p(w|M) = N(w; 0, o2 1)
I)
Posterior parameter distribution by Bayes rule p(alb) = p(a)p(bla)/p(b):

* Gaussian likelibood of the weights: p(y|x, w,M) = N(y; @ w, o

n01se

wiM)p(ylx, w, M
plwieyon) = PWPUPY L~ Nws w, 5)

2 T 1 - 2 S
z= ( Opoise @ @ + 0 I) and u = ((I) @ + (r;owe I) oy

The predictive distribution is given by:

DYooy, M) = Jp(y*\w,x*,M)p(w\x,y,mdw

= N(ys; &) 1y dx)TZd (%) + 0250
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Multiple explanations of the data

-1 0 1 2
i

Remember that a finite linear model f(x,) = ¢ (x,,) ' w with prior on the weights

p(w) = N(w; 0, 02]I) has a posterior distribution

— (0,2 d)T(D +o7)” !

- noise

(wix,y, M) = N(w; u, £) with
Py 8 = (@TD 4 % 1) Ty

and predictive distribution

T T 2
PY«es X, ¥, M) = N(yu; d(x) 1, G(xi) Zd (%) + 016 I)
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Marginal likelihood (Evidence) of our polynomials

Marginal likelihood, or "evidence” of a finite linear model:

~ jp(w\x,M)pmx, w, M) dw
= N(y; 0,02 @@ " + 02 I).

noise

Luckily for Gaussian noise there is a closed-form analytical solution!

o Of * The evidence prefers M = 3,

Q .

< not simpler, not more complex.

=] . .

S sl * Too simple models consistently

o miss most data.

o

- * Too complex models frequently
100, 20 miss some data.

5 10 15 .
M Degree of the pol ynom al
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